Yao-Te Huang

Department of Applied Mathemtaics, National Sun Yat-sen University, Taiwan

The angle $\angle(x, y) \in [0, \pi/2]$ between two vectors x, y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

Hilbert bundles

The angle $\angle(x, y) \in [0, \pi/2]$ between two vectors x, y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

If x or y is zero, then the angle is understood to be any value in $[0, \pi/2]$.

The angle $\angle(x, y) \in [0, \pi/2]$ between two vectors x, y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

If x or y is zero, then the angle is understood to be any value in $[0, \pi/2]$. Let $T: H \to K$ be a linear map. Utilizing the polar identities,

$$\begin{split} &4\langle Tx,Ty\rangle = \sum_{k=0}^3 i^k \|Tx+i^kTy\|^2 \quad \text{for the complex case, or} \\ &4\langle Tx,Ty\rangle = \|Tx+Ty\|^2 - \|Tx-Ty\|^2 \quad \text{for the real case,} \end{split}$$

The angle $\angle(x,y) \in [0,\pi/2]$ between two vectors x,y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

If x or y is zero, then the angle is understood to be any value in $[0, \pi/2]$. Let $T: H \to K$ be a linear map. Utilizing the polar identities,

$$\begin{split} &4\langle Tx,Ty\rangle = \sum_{k=0}^{3} i^{k} \|Tx+i^{k}Ty\|^{2} \quad \text{for the complex case, or} \\ &4\langle Tx,Ty\rangle = \|Tx+Ty\|^{2} - \|Tx-Ty\|^{2} \quad \text{for the real case,} \end{split}$$

we see that T is an isometry, i.e., ||Tx|| = ||x||, $\forall x \in H$, exactly when T preserves inner products, i.e., $\langle Tx, Ty \rangle = \langle x, y \rangle$, $\forall x, y \in H$.

The angle $\angle(x, y) \in [0, \pi/2]$ between two vectors x, y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

If x or y is zero, then the angle is understood to be any value in $[0, \pi/2]$. Let $T: H \to K$ be a linear map. Utilizing the polar identities,

$$\begin{split} &4\langle Tx,Ty\rangle = \sum_{k=0}^{3} i^{k} \|Tx+i^{k}Ty\|^{2} \quad \text{for the complex case, or} \\ &4\langle Tx,Ty\rangle = \|Tx+Ty\|^{2} - \|Tx-Ty\|^{2} \quad \text{for the real case,} \end{split}$$

we see that T is an isometry, i.e., ||Tx|| = ||x||, $\forall x \in H$, exactly when T preserves inner products, i.e., $\langle Tx, Ty \rangle = \langle x, y \rangle$, $\forall x, y \in H$.

In particular, a scalar multiple of a linear isometry preserves angles. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle$ (Linear angle preservers of Hilbert bundles Yao-Te Huang 2/10

The angle $\angle(x, y) \in [0, \pi/2]$ between two vectors x, y in a (real or complex) Hilbert space H is defined by the condition

 $|\langle x, y \rangle| = ||x|| ||y|| \cos \angle (x, y).$

If x or y is zero, then the angle is understood to be any value in $[0, \pi/2]$. Let $T: H \to K$ be a linear map. Utilizing the polar identities,

$$\begin{split} &4\langle Tx,Ty\rangle = \sum_{k=0}^{3} i^{k} \|Tx+i^{k}Ty\|^{2} \quad \text{for the complex case, or} \\ &4\langle Tx,Ty\rangle = \|Tx+Ty\|^{2} - \|Tx-Ty\|^{2} \quad \text{for the real case,} \end{split}$$

we see that T is an isometry, i.e., ||Tx|| = ||x||, $\forall x \in H$, exactly when T preserves inner products, i.e., $\langle Tx, Ty \rangle = \langle x, y \rangle$, $\forall x, y \in H$.

In particular, a scalar multiple of a linear isometry preserves angles. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Box \rangle$ (Linear angle preservers of Hilbert bundles Yao-Te Huang 2/10

Q: Do angle preservers arise from isometries?

Q: Do angle preservers arise from isometries?

Theorem 1. For any two fixed angles $\theta, \phi \in (0, \pi/2]$, a nonzero linear map T is a (positive) scalar multiple of an isometry if and only if

$$\angle(x,y) = \theta \implies \angle(Tx,Ty) = \phi.$$

Q: Do angle preservers arise from isometries?

Theorem 1. For any two fixed angles $\theta, \phi \in (0, \pi/2]$, a nonzero linear map T is a (positive) scalar multiple of an isometry if and only if

$$\angle(x,y) = \theta \quad \Longrightarrow \quad \angle(Tx,Ty) = \phi.$$

In this case, we must have $\theta = \phi$.

Q: Do angle preservers arise from isometries?

Theorem 1. For any two fixed angles $\theta, \phi \in (0, \pi/2]$, a nonzero linear map T is a (positive) scalar multiple of an isometry if and only if

$$\angle(x,y) = \theta \implies \angle(Tx,Ty) = \phi.$$

In this case, we must have $\theta = \phi$.

Proof for $\theta = \phi = \pi/2$. Let $x, y \in H$ with ||x|| = ||y|| = 1. Let λ be the unimodular scalar such that $\lambda \langle x, y \rangle = |\langle x, y \rangle|$. Then $\langle \lambda x + y, \lambda x - y \rangle = 0$. It then follows $\langle \lambda Tx + Ty, \lambda Tx - Ty \rangle = 0$. Consequently, $||Tx||^2 - ||Ty||^2 - \lambda \langle Tx, Ty \rangle + \overline{\lambda} \langle \overline{Tx}, \overline{Ty} \rangle = 0$. Equating the real parts, we see that $||Tx|| = ||Ty|| = \alpha > 0$. Consequently, $\frac{1}{\alpha}T$ is an isometry.

A (real or complex) Banach bundle over a locally compact Hausdorff space X is a pair (B_X, π_X) , in which B_X is a topological space and π_X is a continuous open surjective map from B_X onto X satisfying the following conditions.

(1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.
- (3) If $x \in X$ and $\{b_i\}$ is any net in B_X such that $||b_i|| \to 0$ and $\pi(b_i) \to x$ in X, then $b_i \to 0_x$ (the zero element of B_x) in B_X .

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.
- (3) If $x \in X$ and $\{b_i\}$ is any net in B_X such that $||b_i|| \to 0$ and $\pi(b_i) \to x$ in X, then $b_i \to 0_x$ (the zero element of B_x) in B_X .

We call a Banach bundle a Hilbert bundle if all B_x are Hilbert spaces.

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.
- (3) If $x \in X$ and $\{b_i\}$ is any net in B_X such that $||b_i|| \to 0$ and $\pi(b_i) \to x$ in X, then $b_i \to 0_x$ (the zero element of B_x) in B_X .

We call a Banach bundle a Hilbert bundle if all B_x are Hilbert spaces.

Consider the Banach space of continuous vector sections:

$$\begin{split} C_0(X;B_X) &= \{f: X \to B_X \mid f \text{ is continuous such that} \\ f(x) &\in B_x, \forall x \in X \text{ and } \lim_{x \to \infty} \|f(x)\| = 0\}. \end{split}$$

<ロシ < 回シ < ヨシ < ヨシ 、 ヨ シ 、 ヨ 、 シ へ C Linear angle preservers of Hilbert bundles Yao-Te Huang 4/10

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.
- (3) If $x \in X$ and $\{b_i\}$ is any net in B_X such that $||b_i|| \to 0$ and $\pi(b_i) \to x$ in X, then $b_i \to 0_x$ (the zero element of B_x) in B_X .

We call a Banach bundle a Hilbert bundle if all B_x are Hilbert spaces.

Consider the Banach space of continuous vector sections:

 $C_0(X; B_X) = \{ f : X \to B_X \mid f \text{ is continuous such that} \\ f(x) \in B_x, \forall x \in X \text{ and } \lim_{x \to \infty} \|f(x)\| = 0 \}.$

Condition (3) ensures that the zero section is in $C_0(X; B_X)$ by preservers of Hilbert bundles Yao-Te Huang 4/10

- (1) $\forall x \in X$, the fiber $B_x = \pi_X^{-1}(x)$ carries a Banach space structure with the norm topology agreeing with the subspace topology.
- (2) Scalar multiplication, addition and the norm on B_X are all continuous wherever they are defined.
- (3) If $x \in X$ and $\{b_i\}$ is any net in B_X such that $||b_i|| \to 0$ and $\pi(b_i) \to x$ in X, then $b_i \to 0_x$ (the zero element of B_x) in B_X .

We call a Banach bundle a Hilbert bundle if all B_x are Hilbert spaces.

Consider the Banach space of continuous vector sections:

 $C_0(X; B_X) = \{ f : X \to B_X \mid f \text{ is continuous such that} \\ f(x) \in B_x, \forall x \in X \text{ and } \lim_{x \to \infty} \|f(x)\| = 0 \}.$

Condition (3) ensures that the zero section is in $C_0(X; B_X)$ by preservers of Hilbert bundles Yao-Te Huang 4/10

 $(\alpha f)(x) = \alpha(x)f(x), \quad \forall \alpha \in C_0(X), \forall f \in C_0(X; H_X), \forall x \in X,$

and the $C_0(X)$ -inner product

$$\langle f, g \rangle(x) = \langle f(x), g(x) \rangle_{H_x}, \quad \forall x \in X.$$

 $(\alpha f)(x) = \alpha(x)f(x), \quad \forall \alpha \in C_0(X), \forall f \in C_0(X; H_X), \forall x \in X,$

and the $C_0(X)$ -inner product

$$\langle f, g \rangle(x) = \langle f(x), g(x) \rangle_{H_x}, \quad \forall x \in X.$$

Moreover, we define the absolute value $|f| \in C_0(X)$ of an $f \in C_0(X; H_X)$ by

$$|f|(x) = |\langle f(x), f(x) \rangle|^{1/2}, \quad \forall x \in X.$$

 $(\alpha f)(x) = \alpha(x)f(x), \quad \forall \alpha \in C_0(X), \forall f \in C_0(X; H_X), \forall x \in X,$

and the $C_0(X)$ -inner product

$$\langle f, g \rangle(x) = \langle f(x), g(x) \rangle_{H_x}, \quad \forall x \in X.$$

Moreover, we define the absolute value $|f|\in C_0(X)$ of an $f\in C_0(X;H_X)$ by

$$|f|(x) = |\langle f(x), f(x) \rangle|^{1/2}, \quad \forall x \in X.$$

Conversely, if \mathcal{H} is a Hilbert $C_0(X)$ -module then there is a Hilbert bundle (H_X, π_X) such that $\mathcal{H} \cong C_0(X, H_X)$.

 $(\alpha f)(x) = \alpha(x)f(x), \quad \forall \alpha \in C_0(X), \forall f \in C_0(X; H_X), \forall x \in X,$

and the $C_0(X)$ -inner product

$$\langle f, g \rangle(x) = \langle f(x), g(x) \rangle_{H_x}, \quad \forall x \in X.$$

Moreover, we define the absolute value $|f|\in C_0(X)$ of an $f\in C_0(X;H_X)$ by

$$|f|(x) = |\langle f(x), f(x) \rangle|^{1/2}, \quad \forall x \in X.$$

Conversely, if \mathcal{H} is a Hilbert $C_0(X)$ -module then there is a Hilbert bundle (H_X, π_X) such that $\mathcal{H} \cong C_0(X, H_X)$.

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$.

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Let us make a formal definition.

Definition 2. Let X be a locally compact space, and let \mathcal{H} be a Hilbert $C_0(X)$ -module.

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Let us make a formal definition.

Definition 2. Let X be a locally compact space, and let \mathcal{H} be a Hilbert $C_0(X)$ -module. Let f, g be two continuous vector sections in \mathcal{H} .

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Let us make a formal definition.

Definition 2. Let X be a locally compact space, and let \mathcal{H} be a Hilbert $C_0(X)$ -module. Let f, g be two continuous vector sections in \mathcal{H} . A continuous scalar function $u \in C(X)$ with $0 \le u \le 1$ is said to be the cosine of an angle between f and g, and write, by abusing notation,

$$\cos \angle (f,g) = u$$
 if $|\langle f,g \rangle| = |f||g|u$.

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Let us make a formal definition.

Definition 2. Let X be a locally compact space, and let \mathcal{H} be a Hilbert $C_0(X)$ -module. Let f, g be two continuous vector sections in \mathcal{H} . A continuous scalar function $u \in C(X)$ with $0 \le u \le 1$ is said to be the cosine of an angle between f and g, and write, by abusing notation,

$$\cos \angle (f,g) = u$$
 if $|\langle f,g \rangle| = |f||g|u$.

Be cautious that such u assumes arbitrary or multi-values wherever $|f| \text{ or } |g| \text{ vanishes.} \quad \text{ for } u = 0 \\ \text{ fo$

Elements in a Hilbert bundle, or equivalently, a $C_0(X)$ -module \mathcal{H} , are continuous vector sections from fibre Hilbert spaces $\{H_x\}$. The angle between f, g can be naturally considered as the continuous field

$$x \mapsto \cos^{-1} \frac{|\langle f(x), g(x) \rangle_{H_x}|}{\|f(x)\|_{H_x} \|g(x)\|_{H_x}},$$

wherever it defines.

Let us make a formal definition.

Definition 2. Let X be a locally compact space, and let \mathcal{H} be a Hilbert $C_0(X)$ -module. Let f, g be two continuous vector sections in \mathcal{H} . A continuous scalar function $u \in C(X)$ with $0 \le u \le 1$ is said to be the cosine of an angle between f and g, and write, by abusing notation,

$$\cos \angle (f,g) = u$$
 if $|\langle f,g \rangle| = |f||g|u$.

Be cautious that such u assumes arbitrary or multi-values wherever $|f| \text{ or } |g| \text{ vanishes.} \quad \text{ for } u = 0 \\ \text{ fo$

A linear map $T: \mathcal{H} \to \mathcal{K}$ between Hilbert \mathcal{A} -modules is a module map if

$$T(fa) = (Tf)a, \quad \forall f \in \mathcal{H}, a \in \mathcal{A}.$$

A linear map $T: \mathcal{H} \to \mathcal{K}$ between Hilbert \mathcal{A} -modules is a module map if

$$T(fa) = (Tf)a, \quad \forall f \in \mathcal{H}, a \in \mathcal{A}.$$

Lemma 3. Let $\mathcal{H} \cong C_0(X, H_X)$ and $\mathcal{K} \cong C_0(X, K_X)$ be two Hilbert $C_0(X)$ -modules. A linear map $T : \mathcal{H} \to \mathcal{K}$ is a module map if and only if \exists fibre linear map $T_x : H_x \to K_x, \forall x \in X$, s.t.

$$T(f)(x) = T_x(f(x)), \quad \forall f \in \mathcal{H}.$$

A linear map $T: \mathcal{H} \to \mathcal{K}$ between Hilbert \mathcal{A} -modules is a module map if

$$T(fa) = (Tf)a, \quad \forall f \in \mathcal{H}, a \in \mathcal{A}.$$

Lemma 3. Let $\mathcal{H} \cong C_0(X, H_X)$ and $\mathcal{K} \cong C_0(X, K_X)$ be two Hilbert $C_0(X)$ -modules. A linear map $T : \mathcal{H} \to \mathcal{K}$ is a module map if and only if \exists fibre linear map $T_x : H_x \to K_x, \forall x \in X$, s.t.

$$T(f)(x) = T_x(f(x)), \quad \forall f \in \mathcal{H}.$$

Theorem 4. Let $T : \mathcal{H} \to \mathcal{K}$ be a complex linear local map between two full Hilbert $C_0(X)$ -modules with non-degenerate range.

$$\cos \angle (f,g) = u \implies \cos \angle (Tf,Tg) = v, \quad \forall f,g \in \mathcal{H}.$$

$$\cos \angle (f,g) = u \quad \Longrightarrow \quad \cos \angle (Tf,Tg) = v, \qquad \forall f,g \in \mathcal{H}.$$

Then

 $\blacktriangleright u = v$,

$$\cos \angle (f,g) = u \quad \Longrightarrow \quad \cos \angle (Tf,Tg) = v, \qquad \forall f,g \in \mathcal{H}.$$

Then

- $\blacktriangleright u = v$,
- $T = \alpha J$ for a strictly positive bounded continuous function $\alpha \in C(X)$,

$$\cos \angle (f,g) = u \quad \Longrightarrow \quad \cos \angle (Tf,Tg) = v, \qquad \forall f,g \in \mathcal{H}.$$

Then

- $\blacktriangleright u = v$,
- $T = \alpha J$ for a strictly positive bounded continuous function $\alpha \in C(X)$, and
- ▶ a surjective module isometry J from \mathcal{H} onto \mathcal{K} .

$$\cos \angle (f,g) = u \quad \Longrightarrow \quad \cos \angle (Tf,Tg) = v, \qquad \forall f,g \in \mathcal{H}.$$

Then

- $\blacktriangleright u = v$,
- $T = \alpha J$ for a strictly positive bounded continuous function $\alpha \in C(X)$, and
- ▶ a surjective module isometry J from \mathcal{H} onto \mathcal{K} .

Let $T: \mathcal{H} \to \mathcal{K}$ be a bijective complex linear map from a complex Hilbert $C_0(X)$ -module \mathcal{H} into a complex Hilbert $C_0(Y)$ -module \mathcal{K} . We say that T is quasi-local if

 $\mathrm{supp}\ T^{-1}(T(f)\beta')\ \subseteq\ \mathrm{supp}\ f,\quad \forall f\in \mathfrak{H}, \forall \beta'\in C_0(Y).$

Let $T: \mathcal{H} \to \mathcal{K}$ be a bijective complex linear map from a complex Hilbert $C_0(X)$ -module \mathcal{H} into a complex Hilbert $C_0(Y)$ -module \mathcal{K} . We say that T is quasi-local if

supp $T^{-1}(T(f)\beta') \subseteq$ supp $f, \forall f \in \mathcal{H}, \forall \beta' \in C_0(Y).$

It is clear that if X = Y and T is a $C_0(X)$ -module map then T is quasi-local (as $T(f)\beta' = T(f\beta')$).

Let $T: \mathcal{H} \to \mathcal{K}$ be a bijective complex linear map from a complex Hilbert $C_0(X)$ -module \mathcal{H} into a complex Hilbert $C_0(Y)$ -module \mathcal{K} . We say that T is quasi-local if

supp $T^{-1}(T(f)\beta') \subseteq$ supp $f, \forall f \in \mathcal{H}, \forall \beta' \in C_0(Y).$

It is clear that if X = Y and T is a $C_0(X)$ -module map then T is quasi-local (as $T(f)\beta' = T(f\beta')$).

Theorem 5. Let $T : \mathcal{H} \to \mathcal{K}$ be a bijective complex linear map from a full complex Hilbert $C_0(X)$ -module \mathcal{H} onto a full complex Hilbert $C_0(Y)$ -module \mathcal{K} , such that both T and T^{-1} are quasi-local.

$$\cos \angle (Tf, Tg) = u \quad \Longleftrightarrow \quad \cos \angle (f, g) = v, \qquad \forall f, g \in \mathcal{H}.$$

$$\cos \angle (Tf, Tg) = u \iff \cos \angle (f, g) = v, \quad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi: Y \to X$,

$$\cos \angle (Tf, Tg) = u \iff \cos \angle (f, g) = v, \quad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi:Y\to X,$ a weighted function $\alpha\in C^b(Y)_+$ away from zero,

$$\cos \angle (Tf, Tg) = u \iff \cos \angle (f, g) = v, \quad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi: Y \to X$, a weighted function $\alpha \in C^b(Y)_+$ away from zero, and unitary fiber maps $J_y: K_y \to H_{\varphi(y)}$

$$\cos \angle (Tf, Tg) = u \quad \Longleftrightarrow \quad \cos \angle (f, g) = v, \qquad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi: Y \to X$, a weighted function $\alpha \in C^b(Y)_+$ away from zero, and unitary fiber maps $J_y: K_y \to H_{\varphi(y)}$ such that

$$T(f)(y) = \alpha(y)J_y(f(\varphi(y))), \quad \forall f \in \mathcal{H}, \forall y \in Y.$$

$$\cos \angle (Tf, Tg) = u \iff \cos \angle (f, g) = v, \quad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi: Y \to X$, a weighted function $\alpha \in C^b(Y)_+$ away from zero, and unitary fiber maps $J_y: K_y \to H_{\varphi(y)}$ such that

$$T(f)(y) = \alpha(y)J_y(f(\varphi(y))), \quad \forall f \in \mathcal{H}, \forall y \in Y.$$

Thus, $T = \alpha J$ for the surjective isometry $J = \bigoplus_{y \in Y} J_y$.

$$\cos \angle (Tf, Tg) = u \quad \Longleftrightarrow \quad \cos \angle (f, g) = v, \qquad \forall f, g \in \mathcal{H}.$$

Then there is a homeomorphism $\varphi: Y \to X$, a weighted function $\alpha \in C^b(Y)_+$ away from zero, and unitary fiber maps $J_y: K_y \to H_{\varphi(y)}$ such that

$$T(f)(y) \ = \ \alpha(y)J_y(f(\varphi(y))), \quad \forall f \in \mathcal{H}, \forall y \in Y.$$

Thus, $T = \alpha J$ for the surjective isometry $J = \bigoplus_{y \in Y} J_y$.

Thank you!